Jan 112016
 

Overview

I spend a lot of time with survey data and much of this data revolves around gauging people’s sentiments and tendencies using either a Likert Scale or a Net Promoter Score (NPS) type of thing.

Examples

Here’s an example of gauging sentiment using a 5-point Likert scale.

Indicate how satisfied you are with the following:

00_Grid1

Here’s an example of measuring tendencies, using a 4-point Likert scale.

How often do you use the following learning modalities?

00_Grid2

So, what’s a good way to visualize responses to these types of questions?

Over the past ten years I’ve spent thousands of hours working on the best ways to show how opinion and tendencies skew one way or another.  I have found that in most cases a divergent stacked bar chart helps me (and more importantly, my clients) best see what’s going on with the survey responses.

In this blog posts we’ll

  • See an example of a divergent stacked bar chart (also called a staggered stacked bar chart)
  • Work through a data visualization improvement process
  • Show how to visualize different scales (e.g., NPS, Top 3/Bottom 3, 5-point Likert, etc.)
  • Show sentiment and tendencies over time
  • Present a dashboard that will allow you to experiment with different visualization approaches

Note: for step-by-step instructions on how to build a Likert-scale divergent stacked bar chart in Tableau, click here.

Divergent Stacked Bar vs. 100% Stacked Bar

Readers of my newsletter and folks visiting the web site may have seen my redesign of a New York Times infographic that showed the tendencies of politicians to lie or tell the truth.  Here’s the 100% Stacked Bar chart that appeared in the New York Times.

Figure 1 -- 100% stacked bar chart.

Figure 1 — 100% stacked bar chart.

Here’s the redesign using a divergent stacked bar chart.

Figure 2 -- Divergent stacked bar chart.

Figure 2 — Divergent stacked bar chart.

With both the 100% stacked bar chart and the divergent stacked bar charts the overall length of the bars is the same, but with the divergent approach the bars are shifted left or right to show which way a candidate leans. I, and others I’ve polled, find that shifting the bars makes the chart easier to understand.

How We Got Here — Likert Scale Improvement Process

Consider the table below that shows the results from a fictitious poll on the use of various learning modalities.

Figure 3 -- Table with survey results.

Figure 3 — Survey results in a table.

I can’t glean anything meaningful from this.

What about a bar chart?

Figure 4 -- Likert scale questions using a bar chart. Yikes.

Figure 4 — Likert scale questions using a bar chart. Yikes.

Wow, that’s really bad.

What about a 100% stacked bar chart?

Figure 5 -- 100% stacked bar chart using default colors.

Figure 5 — 100% stacked bar chart using default colors.

Okay, that’s better, but it’s still pretty bad as Tableau’s default colors do nothing to help us see tendencies that are adjacent. That is, “Often” and “Sometimes” should have similar colors, as should “Rarely” and “Never.”

So, let’s try using better colors…

(…and don’t even think about using red and green.)

Figure 6 -- 100% stacked bar chart using a more appropriate color scheme.

Figure 6 — 100% stacked bar chart using a more appropriate color scheme.

This is certainly an improvement, but the modalities are listed alphabetically and not by how often they’re used. Let’s see what happens when we sort the bars.

Figure 7 -- Sorted 100% stacked bar chart with good colors.

Figure 7 — Sorted 100% stacked bar chart with good colors.

It’s taken us several tries, but it’s now easier to see which modalities are more popular.

But we can do better.

Here’s the same data rendered as a divergent stacked bar chart.

Figure 8 -- Sorted divergent stacked bar chart with good colors.

Figure 8 — Sorted divergent stacked bar chart with good colors.

Of course, we can also look take a coarser view and just compare Sometimes/Often with Rarely/Never, as shown here.

Figure 9 – Divergent stacked bar chart with only two levels of sentiment.

Figure 9 – Divergent stacked bar chart with only two levels of sentiment.

I find that the divergent approach “speaks” to me and it resonates with my colleagues and clients.

Experiments using Different Scales

A while back Helen Lindsey was kind enough to send me some data that contained responses to some Net Promoter Score questions.  Specifically, folks were asked to rate companies/products on a 0 to 10 or 1 to 10 scale.

Figure 10 -- The classic Net Promoter Score (NPS) question

Figure 10 — The classic Net Promoter Score (NPS) question

We compute NPS by subtracting the percentage of folks that are promoters (i.e., people who responded with a 9 or a 10), subtracting the percentage of folks that are detractors (i.e., people who responded with a 0 through 6) and multiplying by 100.

But sometimes my clients have questions that are on a 10 or 11-point scale but instead want to compute the percentage of folks that responded with one of the top three boxes minus the percentage of folks that responded with the bottom three boxes.

I realized that the Lindsey data set could provide a type of “sandbox” where we could experiment with different sentiment scales including NPS, Top 3 minus Bottom 3, 5-point Likert, 3-point Likert, and 2-point Likert.

Let’s look at the results of some of these experiments.

NPS

Here are two ways we can visualize NPS data.  The first shows the percentages of people that fall into the three categories.

Figure 11 -- NPS showing percentages

Figure 11 — NPS showing percentages

Here’s the same view, but with the NPS score superimposed over the divergent stacked bars.

Figure 12 -- NPS with score superimposed

Figure 12 — NPS with score superimposed

NPS over Time

It turns out that divergent stacked bars are great at showing NPS trends over time.  Here’s a view using percentages.

Figure 13 -- Divergent stacked bar showing NPS over time with percentages

Figure 13 — Divergent stacked bar showing NPS over time with percentages

Here’s the same view but with the score superimposed.

Figure 14 -- Divergent stacked bar showing NPS over time with scores

Figure 14 — Divergent stacked bar showing NPS over time with scores

Note – for some other interesting treatments of showing sentiment over time, see Joe Mako’s visualization on banker honesty.

Net = Top 3 minus Bottom 3

Let’s take the same data but divide it into the following buckets:

  • Positive = Top 3 Boxes
  • Neutral = Middle 4 Boxes
  • Negative = Bottom 3 Boxes

Here are the associated visualizations.

Figure 15 -- Top 3 / Bottom 3 showing with percentages

Figure 15 — Top 3/Bottom 3 showing with percentages

Figure 16 -- Top 3 / Bottom 3 with scores

Figure 16 — Top 3/Bottom 3 with scores

Five, Three, and Two-Point Likert Scale Renderings

Let’s suppose that instead of asking a questions on a 1 through 10 scale we instead asked folks to select one of the following five responses:

  • Strongly disagree
  • Disagree
  • Neutral
  • Agree
  • Strongly agree

Here’s the same NPS data but rendered using a five-point Likert scale.

Figure 17 -- Divergent stacked bar chart showing all responses

Figure 17 — Divergent stacked bar chart showing all responses

And here’s the same data, but divided into positive, neutral, and negative sentiments (3-point Likert).

Figure 18 -- Divergent stacked bar showing positive, neutral, and negative

Figure 18 — Divergent stacked bar showing positive, neutral, and negative

Finally, here’s the same data, but only showing positive and negative sentiments (2-point Likert).

Figure 19 -- Divergent stacked bar showing just positive and negative

Figure 19 — Divergent stacked bar showing just positive and negative

Try it yourself

Below you will find a dashboard that allows you to explore different combinations of the 1 to 10 scale.

I strongly recommend you do NOT give your audience all these scaling options;  these are here for you to experiment and see how the visualizations and ranking change based on what scales you use.  The only option I would present to your audience is the ability to toggle back and forth between percentages and scores.