Aug 232017
 

Why you may be missing important insights if you only look at Percent Top 2 Boxes.

August 23, 2017

Overview

Anyone who has looked to this blog for insights into visualizing survey data knows that my “go to” visualization for Likert scale sentiment data is a divergent stacked bar chart (Figure 1).

Figure 1 -- Divergent stacked bar chart for a collection of 5-point Likert scale questions

Figure 1 — Divergent stacked bar chart for a collection of 5-point Likert scale questions

You might prefer grouping all the positives and negatives together, showing only a three-point scale.  Or perhaps you question having the neutrals “straddle the fence” as it were, with half being positive and half being negative.  These are fair points that I’m happy to debate at another time as right now I want to focus on what happens when we need to compare survey results between two periods.

Showing responses for more than one period

As much as I love the divergent stacked bar chart, it can become a little difficult to parse when you show more than one period for more than one question. Consider the chart below where we compare results for 2017 vs. 2016 (Figure 2).

Figure 2 -- Showing responses for two different periods

Figure 2 — Showing responses for two different periods

As comfortable as I am with seeing how sentiment skews positive or negative with a divergent stacked bar chart, I’m at a loss to compare the results across two different years. The only thing that really stands out is that there appears to be a pretty big difference between 2017 vs. 2016 for “Really important issue 7” at the bottom of the chart.

The allure of Percent Top 2 Boxes

It’s times like these when focusing on the percentage of respondents that selected Strongly agree or Generally agree (Percent Top 2 Boxes) is very tempting.  Consider the connected dot plot in Figure 3.

Figure 3 -- Connected dot plot showing difference between Percent Top 2 Boxes in 2017 and 2016.

Figure 3 — Connected dot plot showing difference between Percent Top 2 Boxes in 2017 and 2016.

Hey, that’s clear and easy to read. Indeed, this is one of my recommended approaches for comparing Importance vs. Satisfaction and it works great for comparing results across two time periods.

So, we’re all done, right?

Not so fast. While this approach will work in many cases, you should never stop exploring as there may be something important that remains hidden when you only show Percent Top 2 Boxes.

It’s not the economy, it’s the neutrals (stupid)

I was recently working with a client who had surveyed a large group about several contentious topics. The client believed that, much like the population of the United States, the surveyed population had become more polarized over the past year, at least with respect to these survey topics.

In reviewing the results for three questions, if we just focus on the positives (Percentage Top 2 Boxes) things look like they have improved (Figure 4.)

Figure 4 -- Connected dot plot showing change in positives (Percentage Top 2 Boxes) between 2017 and 2016.

Figure 4 — Connected dot plot showing change in positives (Percentage Top 2 Boxes) between 2017 and 2016.

See? We have more positives (green) now than we did a year ago (gray.)

This may be true, but it only tells part of the story.

Consider the divergent stacked bar chart shown in Figure 5.

Figure 5 -- 5-Point Divergent stacked bar char comparing results from 2017 and 2016

Figure 5 — 5-Point Divergent stacked bar char comparing results from 2017 and 2016

Woah… there’s something very interesting going on here, but it’s very hard to see.  Maybe if we combine all the positives and negatives the “ah-ha” will be easier to decipher (Figure 6).

Figure 6 -- 3-Point Divergent stacked bar char comparing results from 2017 and 2016. There are big differences between the two time periods, but they are hard to see.

Figure 6 — 3-Point Divergent stacked bar char comparing results from 2017 and 2016. There are big differences between the two time periods, but they are hard to see.

Well, that’s a little better, but the story — and it’s a really big story — is still hidden. Let’s see what happens if we abandon both the connected dot plot and divergent stacked bar chart and instead try a slopegraph (actually, a distributed slopegraph, Figure 7).

Figure 7 -- Distributed slopegraph showing change in positives, neutrals, and negatives.

Figure 7 — Distributed slopegraph showing change in positives, neutrals, and negatives.

Now we can see it!  Just look at the gray lines showing the dramatic change in neutrals.  My client’s hunch was correct — the population has become much more polarized as the percentage of neutrals have plummeted while the percentage of people expressing both positive and negative sentiment has increased. You cannot see this at all with the connected dot plot and it’s hard to glean from the divergent stacked bar chart.

There is no, one best chart for every situation

I had the good fortune to attend one of Cole Nussbaumer Knaflic’s Storytelling with Data workshops. She uses a wonderful metaphor in describing how much work it can take to present just one, really good finding. I paraphrase:

“You have to shuck a lot of oysters to find a single pearl. In your presentations, don’t show all the shells you shucked; just show the pearl.”

For this last example, if I only had 30 seconds of the chief stakeholder’s time I would just show the distributed slopegraph as it is the “pearl.”  It clearly and concisely imparts the biggest finding for the data set: the population has become considerably more polarized for all three issues.

But…

What happens if the chief stakeholder wants to know more? I would be armed with an interactive dashboard to answer questions like these:

“The people that disagree… how many of them strongly disagree?”

“The people that agree… how many of them strongly agree?”

“Are these findings consistent across the entire organization, or only in some areas?”

Conclusion

So, when showing changes in sentiment over time, which chart is best? The connected dot plot? The divergent stacked bar chart? The distributed slopegraph?

To quote my fellow author of the Big Book of Dashboards, Andy Cotgreave, “it depends.”

You should be prepared to apply all three approaches and choose the one that imparts the greatest understanding with the least amount of effort.

Note

I’ve had a number of debates with people about how I prefer to handle neutrals (half on the negative side and half on the positive side). If you find that troubling you can place the neutrals to one side, as shown in Figure 8.

Figure 8 -- Neutrals placed to one side providing a common baseline for comparison.

Figure 8 — Neutrals placed to one side providing a common baseline for comparison.

Jan 112016
 

Overview

I spend a lot of time with survey data and much of this data revolves around gauging people’s sentiments and tendencies using either a Likert Scale or a Net Promoter Score (NPS) type of thing.

Examples

Here’s an example of gauging sentiment using a 5-point Likert scale.

Indicate how satisfied you are with the following:

00_Grid1

Here’s an example of measuring tendencies, using a 4-point Likert scale.

How often do you use the following learning modalities?

00_Grid2

So, what’s a good way to visualize responses to these types of questions?

Over the past ten years I’ve spent thousands of hours working on the best ways to show how opinion and tendencies skew one way or another.  I have found that in most cases a divergent stacked bar chart helps me (and more importantly, my clients) best see what’s going on with the survey responses.

In this blog posts we’ll

  • See an example of a divergent stacked bar chart (also called a staggered stacked bar chart)
  • Work through a data visualization improvement process
  • Show how to visualize different scales (e.g., NPS, Top 3/Bottom 3, 5-point Likert, etc.)
  • Show sentiment and tendencies over time
  • Present a dashboard that will allow you to experiment with different visualization approaches

Note: for step-by-step instructions on how to build a Likert-scale divergent stacked bar chart in Tableau, click here.

Divergent Stacked Bar vs. 100% Stacked Bar

Readers of my newsletter and folks visiting the web site may have seen my redesign of a New York Times infographic that showed the tendencies of politicians to lie or tell the truth.  Here’s the 100% Stacked Bar chart that appeared in the New York Times.

Figure 1 -- 100% stacked bar chart.

Figure 1 — 100% stacked bar chart.

Here’s the redesign using a divergent stacked bar chart.

Figure 2 -- Divergent stacked bar chart.

Figure 2 — Divergent stacked bar chart.

With both the 100% stacked bar chart and the divergent stacked bar charts the overall length of the bars is the same, but with the divergent approach the bars are shifted left or right to show which way a candidate leans. I, and others I’ve polled, find that shifting the bars makes the chart easier to understand.

How We Got Here — Likert Scale Improvement Process

Consider the table below that shows the results from a fictitious poll on the use of various learning modalities.

Figure 3 -- Table with survey results.

Figure 3 — Survey results in a table.

I can’t glean anything meaningful from this.

What about a bar chart?

Figure 4 -- Likert scale questions using a bar chart. Yikes.

Figure 4 — Likert scale questions using a bar chart. Yikes.

Wow, that’s really bad.

What about a 100% stacked bar chart?

Figure 5 -- 100% stacked bar chart using default colors.

Figure 5 — 100% stacked bar chart using default colors.

Okay, that’s better, but it’s still pretty bad as Tableau’s default colors do nothing to help us see tendencies that are adjacent. That is, “Often” and “Sometimes” should have similar colors, as should “Rarely” and “Never.”

So, let’s try using better colors…

(…and don’t even think about using red and green.)

Figure 6 -- 100% stacked bar chart using a more appropriate color scheme.

Figure 6 — 100% stacked bar chart using a more appropriate color scheme.

This is certainly an improvement, but the modalities are listed alphabetically and not by how often they’re used. Let’s see what happens when we sort the bars.

Figure 7 -- Sorted 100% stacked bar chart with good colors.

Figure 7 — Sorted 100% stacked bar chart with good colors.

It’s taken us several tries, but it’s now easier to see which modalities are more popular.

But we can do better.

Here’s the same data rendered as a divergent stacked bar chart.

Figure 8 -- Sorted divergent stacked bar chart with good colors.

Figure 8 — Sorted divergent stacked bar chart with good colors.

Of course, we can also look take a coarser view and just compare Sometimes/Often with Rarely/Never, as shown here.

Figure 9 – Divergent stacked bar chart with only two levels of sentiment.

Figure 9 – Divergent stacked bar chart with only two levels of sentiment.

I find that the divergent approach “speaks” to me and it resonates with my colleagues and clients.

Experiments using Different Scales

A while back Helen Lindsey was kind enough to send me some data that contained responses to some Net Promoter Score questions.  Specifically, folks were asked to rate companies/products on a 0 to 10 or 1 to 10 scale.

Figure 10 -- The classic Net Promoter Score (NPS) question

Figure 10 — The classic Net Promoter Score (NPS) question

We compute NPS by subtracting the percentage of folks that are promoters (i.e., people who responded with a 9 or a 10), subtracting the percentage of folks that are detractors (i.e., people who responded with a 0 through 6) and multiplying by 100.

But sometimes my clients have questions that are on a 10 or 11-point scale but instead want to compute the percentage of folks that responded with one of the top three boxes minus the percentage of folks that responded with the bottom three boxes.

I realized that the Lindsey data set could provide a type of “sandbox” where we could experiment with different sentiment scales including NPS, Top 3 minus Bottom 3, 5-point Likert, 3-point Likert, and 2-point Likert.

Let’s look at the results of some of these experiments.

NPS

Here are two ways we can visualize NPS data.  The first shows the percentages of people that fall into the three categories.

Figure 11 -- NPS showing percentages

Figure 11 — NPS showing percentages

Here’s the same view, but with the NPS score superimposed over the divergent stacked bars.

Figure 12 -- NPS with score superimposed

Figure 12 — NPS with score superimposed

NPS over Time

It turns out that divergent stacked bars are great at showing NPS trends over time.  Here’s a view using percentages.

Figure 13 -- Divergent stacked bar showing NPS over time with percentages

Figure 13 — Divergent stacked bar showing NPS over time with percentages

Here’s the same view but with the score superimposed.

Figure 14 -- Divergent stacked bar showing NPS over time with scores

Figure 14 — Divergent stacked bar showing NPS over time with scores

Note – for some other interesting treatments of showing sentiment over time, see Joe Mako’s visualization on banker honesty.

Net = Top 3 minus Bottom 3

Let’s take the same data but divide it into the following buckets:

  • Positive = Top 3 Boxes
  • Neutral = Middle 4 Boxes
  • Negative = Bottom 3 Boxes

Here are the associated visualizations.

Figure 15 -- Top 3 / Bottom 3 showing with percentages

Figure 15 — Top 3/Bottom 3 showing with percentages

Figure 16 -- Top 3 / Bottom 3 with scores

Figure 16 — Top 3/Bottom 3 with scores

Five, Three, and Two-Point Likert Scale Renderings

Let’s suppose that instead of asking a questions on a 1 through 10 scale we instead asked folks to select one of the following five responses:

  • Strongly disagree
  • Disagree
  • Neutral
  • Agree
  • Strongly agree

Here’s the same NPS data but rendered using a five-point Likert scale.

Figure 17 -- Divergent stacked bar chart showing all responses

Figure 17 — Divergent stacked bar chart showing all responses

And here’s the same data, but divided into positive, neutral, and negative sentiments (3-point Likert).

Figure 18 -- Divergent stacked bar showing positive, neutral, and negative

Figure 18 — Divergent stacked bar showing positive, neutral, and negative

Finally, here’s the same data, but only showing positive and negative sentiments (2-point Likert).

Figure 19 -- Divergent stacked bar showing just positive and negative

Figure 19 — Divergent stacked bar showing just positive and negative

Try it yourself

Below you will find a dashboard that allows you to explore different combinations of the 1 to 10 scale.

I strongly recommend you do NOT give your audience all these scaling options;  these are here for you to experiment and see how the visualizations and ranking change based on what scales you use.  The only option I would present to your audience is the ability to toggle back and forth between percentages and scores.

Jan 312013
 

I spend half my time as a musician and the other half as a data visualization “scientist”.  I love both professions but one downside shared by both professions is that I cannot listen to music nor glance at a chart without trying to figure out what is going on inside the music and inside the chart.

Consider this snippet from a recent NY Times / CBS Poll on Americans’ Views on Gun Control:

I was able to interpret this and all the other charts in the article quickly, but I found myself wondering if the information would read or “sing” better with a divergent stacked bar chart instead of a standard stacked bar chart.  Here’s a version I created using Gantt bars in Tableau:

I like how the divergent (or” staggered”)  approaches shows the skew in sentiment.

For information on how to create this type of chart, see Likert Scales: The Final Word and Masie’s Mobile Pulse Survey.

Note: I’m not able to post the workbook as I created it using Tableau 8 and I do not have access to Tableau 8 Public yet (it is in restricted beta).  As per Joe Mako’s comments below, you can find a downloadable solution at http://public.tableausoftware.com/views/firearmownership/Dashboard.